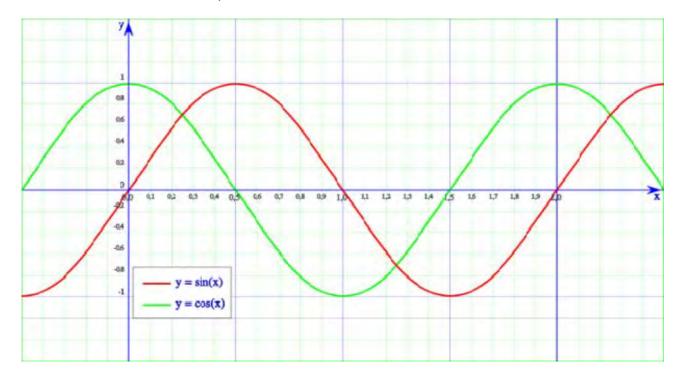

TRIGONOMETRIA:

Seno: sen α = O/H

Coseno: $\cos \alpha = A/H$


Tangente: $tg \alpha = O/A$

El seno esta relacionado con la Proyección en el eje opuesto: Py = H . $sen(\alpha)$

El coseno esta relacionado con la Proyección en el eje adyacente: $Px = H \cdot cos(\alpha)$

Gráfico de las funciones Seno y Coseno:

Son funciones cíclicas acotadas (entre 0 y 1). Entre otras cosas describen la oscilacion de las ondas.

Se puede deducir del gráfico que siempre se cumple: $sen^2(\alpha) + cos^2(\alpha) = 1$. Intente verificarlo para cualquier ángulo. Luego reemplazando en esa expresión con los datos de las definiciones de seno y coseno:

$$sen^{2}(\alpha) + cos^{2}(\alpha) = 1$$

$$\frac{O^{2}}{H^{2}} + \frac{A^{2}}{H^{2}} = 1$$

$$\frac{O^{2} + A^{2}}{H^{2}} = 1$$

$$O^{2} + A^{2} = H^{2}$$

Esto último, $O^2 + A^2 = H^2$, no es otra cosa que el teorema de Pitágoras = $H = \sqrt{O^2 + A^2}$

Calculo de Perímetros, Superficies y Volúmenes

	Cuadrado	Triángulo	
	$A = I^2$	$A = \frac{1}{2} \cdot B \cdot h$	h!
	ffectángulo	Romboide	7
B	A = B · h	A = B · h	h B
d	Rombo	Trapecio	Ь
	$A = \frac{1}{2} D \cdot d$	$A = \frac{B+b}{2} \cdot h$	h B
	Poligono regular	Circulo	
(a)	$A = \frac{P \cdot a}{2}$	$A = \pi R^2$ $L = 2\pi R$	P
R	Corona circular	Sector circular	/ R
	$A=\pi(R^2-r^2)$	$A = \frac{\pi R^2}{360} n$	
	Cubo	Cilindro	
١	A = 6 l ² V = l ³	$A = 2\pi R(h + R)$ $V = \pi R^2 \cdot h$	h.
	Ortoedro	Ceno	Λ
	$A = 2\{ab + ac + bc\}$	$A = \pi R \cdot (g + R)$	h g
a b	V = abc	$V = \frac{1}{3} \pi R^2 \cdot h$	
	Prisma recto	Tronco de como	
	A = P(h + a)	$A = \pi[g(R + r) + R^2 + r^2]$	/ h /g
	V = A _b · h	$V = \frac{1}{3} \pi h (R^2 + r^2 + Rr)$	
A .	Tetraedro regular	Esfera	R.
	$A = \frac{P\sqrt{3}}{V}$ $V = \frac{P^2 \sqrt{2}}{12}$	$A = 4\pi R^2$ $V = \frac{4}{3} \pi R^3$	(

Figura	Nombre	Área
1	Cuadrado	$\mathbf{A} = \cdot = ^2$
a b	Rectángulo	$\mathbf{A} = \mathbf{b} \cdot \mathbf{a}$
a	Triángulo	$\mathbf{A} = \frac{\mathbf{b} \cdot \mathbf{a}}{2}$
D d	Rombo	$\mathbf{A} = \frac{\mathbf{D} \cdot \mathbf{d}}{2}$
a	Romboide	$\mathbf{A} = \mathbf{b} \cdot \mathbf{a}$
аВ	Trapecio	$\mathbf{A} = \frac{B + b}{2} \cdot a$
ap	Polígono regular	$\mathbf{A} = \frac{\text{Perímetro} \cdot \text{ap}}{2}$
1	Círculo	$\mathbf{A}=\mathbf{\pi}\cdot\mathbf{r}^2$
n°	Sector circular	$\mathbf{A} = \frac{\pi \cdot r^2}{360^{\circ}} \cdot \mathbf{n}^{\circ}$
nºb	Segmento circular	$\mathbf{A} = \frac{\pi \cdot \mathbf{r}^2 \cdot \mathbf{n}^\circ}{360^\circ} - \frac{\mathbf{b} \cdot \mathbf{a}}{2}$
r.	Corona circular	$\mathbf{A}=\pi\left(R^2-r^2\right)$

 $Unidades: \underline{http://www.ingsolve.com.ar/matematica/utiles/unidades.pdf}$